Tag Archives: claw dry vacuum pump

China Professional Oil Free Dry Claw Vacuum Pump Air Cooling / Water Cooling Use for Hospital vacuum pump belt

Product Description

Claw Vacuum Pump (RC180)

Product Description

With claw vacuum pumps, 2 claw-shaped rotors turn in opposite direction inside the housing. Due to the shape of these claw rotors, the air or gas is sucked in, compressed and discharged. The claw rotors do not come into contact either with each other nor with the cylinder in which they are rotating. Tight clearances between the claw rotors and the housing optimise the internal seal and guarantee a consistently high pumping speed. A synchronisation gearbox ensures exact synchronisation of the claw rotors.

Claw vacuum pumps are driven by a directly flange-mounted asynchronous motor, with an efficiency class IE2.  Claw vacuum pumps are ideally suited to use with frequency-controlled drives. Claw vacuum pumps are available in a wide range of sizes.

There are also variants for special applications such as dust and gas explosion protection, high steam contents, gas tightness and increased oxygen contents.

Product Parameters


Product Model 50/60Hz RC100
Pumping Speed 50Hz 180m³/H
60Hz 216m³/H
Ultimate Pressure mbar 70
Inlet Diameter   G1 1/4”
Voltage 50Hz 380-415V
60Hz 380-440V
Motor Power kW 4
Rotate Speed r/min 2980
Noise Level dB 80
Net Weight kg 195

Detailed Photos

Installation Instructions



Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Claw
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: Vacuum
Work Function: Maintain the Pump
Working Conditions: Dry
US$ 4500/Set
1 Set(Min.Order)




vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China Professional Oil Free Dry Claw Vacuum Pump Air Cooling / Water Cooling Use for Hospital   vacuum pump belt	China Professional Oil Free Dry Claw Vacuum Pump Air Cooling / Water Cooling Use for Hospital   vacuum pump belt
editor by Dream 2024-05-16

china near me Oil Free Claw Style Dry Seal Vacuum Pump manufacturers

Item Description

Oil Cost-free Claw CZPT Dry Seal Vacuum Pump

  1. Structure Characteristics:

1. The geometry of the rotor is created by CZPT organization, and the quantity utilization ratio is sixty seven%. The internet removal fee was ninety nine%.
2. Maintain clearance among the rotor and the rotor, between the rotor and the pump body, no friction, no need to have to use lubricating oil, and truly attain clean vacuum.
3. NC substantial-precision equipment tool processing and dynamic stability calibration, maintain the rotor equilibrium momentum, reduced sounds.
four. Exhaust right into the ambiance and commence up speedily inside 3 minutes.
five. Mix seal, no leakage (gas, oil) can genuinely achieve cleanse vacuum.
6. The filter parts these kinds of as pump chamber, rotor and airway are coated with robust acid resistance and most organic solvents.
seven. CZPT ed original CZPT and NSK bearings can drastically improve the provider life of the pump and minimize the maintenance cycle.
8. It can be merged in several levels and the limit vacuum can attain <1Pa.
nine. As a CZPT phase pump matching of roots pump, molecular pump, titanium sublimation pump, sputtering ion pump and cryopump, it can kind a thoroughly clean fret-totally free vacuum and oil-free vacuum unit to meet up with the demands of a wider selection of users.

II.Operating Theory

Claw-type vacuum pump is a cleanse dry vacuum pump. With the modify of volume, there are suction and exhaust ports in the left and correct rotors of the shelf. With a pair of claw-variety rotors, it rotates backward, sucks even though exhausting. As demonstrated in the determine 1, the suggestion element of the rotor divides the pump chamber into two fully closed parts: the suction chamber and the exhaust chamber.
Inhalation procedure: When the rotor rotates to the situation of Figure (2), it starts to inhale the fuel. The rotor rotates about 200 levels right up until the inlet is closed. As Determine (4), the inhalation ends when the rotor continues to rotate to the horizontal placement. At this time, the exhaust and suction ports are completely shut, forming a totally shut vacuum chamber.

Exhaust procedure: When the rotor rotates to the place revealed in Determine (1), the gas inhaled in the earlier cycle will be double compressed. When turning to place (3), the exhaust port opens and starts off to exhaust right up until turning to situation (4), the exhaust port will be shut, and the suction chamber is totally crammed with gas, because the suction and exhaust are carried out at the identical time. For that reason, the pump continually sucks and exhausts as it rotates at a consistent higher velocity.

III.Application Region:
1. TSD dry seal (claw-type) vacuum pump is ideal for vacuum 1Pa acquisition environment. It is commonly employed in scientific analysis laboratories, petrochemical, pharmaceutical, pharmaceutical intermediates, meals, photovoltaic electronics, metallurgical and mining industries.
two. Owing to the condensation and compression attributes of the pump, the suspicious organic and natural solvents (ethanol, benzene, gasoline, butane) can be gathered action by action by action from the outlet after the condensation of the pump chamber, which can comprehend complete recovery and reuse, so it is a lot more vitality-preserving and far more environmentally welcoming.

Be aware:
one. The earlier mentioned curve indices are measured at the inhalation air temperature of 20 ºC, atmospheric pressure of 101310Pa (760 mmHg) and air humidity of 70%, which need to be established according to different doing work circumstances.
two. Reduced strain is the price of air partial pressure calculated by compressed vacuum gauge at the inlet of the unit when the pump mouth is adequately pumped beneath sealed problems without any container.
three. If the CZPT provide has a frequency converter to commence with, the previously mentioned indicators will alter.

IV.Primary CZPT nical Parameters:


The suction produced by regenerative blowers is used in a selection of industrial programs. They have a non-contacting, quick rotating impeller, so they are use and servicing free. There are two annular independent aspect passages together the casing on both sides of the impeller.
china near me Oil Free Claw Style Dry Seal Vacuum Pump manufacturers